博客
关于我
GBDT和随机森林的区别
阅读量:646 次
发布时间:2019-03-15

本文共 868 字,大约阅读时间需要 2 分钟。

随机森林与GBDT的对比及其工作原理

随机森林是一种集成学习方法,它的核心概念来源于袋装法(Bagging)。与传统的袋装法不同,随机森林在抽样属性时引入了随机性,形成了一种更为强大的模型组合方法。具体来说,假设输入数据的属性总数为d,随机森林会独立地从这些属性中选择k个进行模型训练。这一点在k等于所有属性数d时,效果与单独使用全部属性相当。而当k=1时,随机森林会只针对单个属性进行训练,这种方法通常在k=log2(d)时表现最佳。

随机森林的基学习器通常采用决策树算法或神经网络等模型。作为一种改进版的袋装法,随机森林通过多次训练不同的模型,利用不同模型之间的差异性来提升泛化能力。这种差异性使得最终的预测结果具有较强的泛化性能。

与随机森林形成对比的是梯度提升树(Gradient Boosting Decision Trees,GBDT)。GBDT属于另一种著名的集成学习方法,属于集成的另一种形式-Boosting算法。其工作原理如下:首先从训练集上训练一个基学习器(Base Learner),然后根据基学习器的表现,对训练样本的权重进行调整。错误的样本(基学习器预测值与实际值不符的样本)获得更高的权重,从而在后续迭代中被赋予更多的训练资源。随着迭代次数的增加,最终目标是训练出T个基学习器,将它们以一定的权重结合,得到最终的预测结果。

与传统的Boosting算法相比,GBDT的每次迭代并非简单地对权重加以调整,而是针对每一步模型预测中残差(Loss)的梯度方向进行改进。新的模型被设计为能更有效地减少之前模型的残差,这与最小二乘法中通过梯度下降来最小化损失函数的思想相似。在实际应用中,GBDT通过不断地修正预测模型的残差,逐步提升模型性能。

GBDT的优势在于其强大的模型组合能力。尽管其理论复杂度较高,但在实际应用中表现出的泛化能力和预测精度往往能够较之随机森林更好地适应数据的复杂性。不过,随机森林由于其采用有放回的抽样方法,模型更加简单,每个基模型的训练也相对快捷,这使得其在某些场景下同样具有有优势地位。

转载地址:http://mbxlz.baihongyu.com/

你可能感兴趣的文章
mysql建立索引的几大原则
查看>>
Mysql建表中的 “FEDERATED 引擎连接失败 - Server Name Doesn‘t Exist“ 解决方法
查看>>
mysql开启bin-log日志,用于canal同步
查看>>
MySQL开源工具推荐,有了它我卸了珍藏多年Nactive!
查看>>
MySQL异步操作在C++中的应用
查看>>
MySQL引擎讲解
查看>>
Mysql当前列的值等于上一行的值累加前一列的值
查看>>
MySQL当查询的时候有多个结果,但需要返回一条的情况用GROUP_CONCAT拼接
查看>>
MySQL必知必会(组合Where子句,Not和In操作符)
查看>>
MySQL必知必会总结笔记
查看>>
MySQL快速入门
查看>>
MySQL快速入门——库的操作
查看>>
mysql快速复制一张表的内容,并添加新内容到另一张表中
查看>>
mysql快速查询表的结构和注释,字段等信息
查看>>
mysql怎么删除临时表里的数据_MySQL中关于临时表的一些基本使用方法
查看>>
mysql性能优化
查看>>
mysql性能优化学习笔记-存储引擎
查看>>
MySQL性能优化必备25条
查看>>
Mysql性能优化(1):SQL的执行过程
查看>>
Mysql性能优化(2):数据库索引
查看>>